Factorised Representations for Neural Network Adaptation to Diverse Acoustic Environments
نویسندگان
چکیده
Adapting acoustic models jointly to both speaker and environment has been shown to be effective. In many realistic scenarios, however, either the speaker or environment at test time might be unknown, or there may be insufficient data to learn a joint transform. Generating independent speaker and environment transforms improves the match of an acoustic model to unseen combinations. Using i-vectors, we demonstrate that it is possible to factorise speaker or environment information using multi-condition training with neural networks. Specifically, we extract bottleneck features from networks trained to classify either speakers or environments. We perform experiments on the Wall Street Journal corpus combined with environment noise from the Diverse Environments Multichannel Acoustic Noise Database. Using the factorised i-vectors we show improvements in word error rates on perturbed versions of the eval92 and dev93 test sets, both when one factor is missing and when the factors are seen but not in the desired combination.
منابع مشابه
Adaptation of deep neural network acoustic models using factorised i-vectors
The use of deep neural networks (DNNs) in a hybrid configuration is becoming increasingly popular and successful for speech recognition. One issue with these systems is how to efficiently adapt them to reflect an individual speaker or noise condition. Recently speaker i-vectors have been successfully used as an additional input feature for unsupervised speaker adaptation. In this work the use o...
متن کاملSpeaker Representations for Speaker Adaptation in Multiple Speakers' BLSTM-RNN-Based Speech Synthesis
Training a high quality acoustic model with a limited database and synthesizing a new speaker’s voice with a few utterances have been hot topics in deep neural network (DNN) based statistical parametric speech synthesis (SPSS). To solve these problems, we built a unified framework for speaker adaptive training as well as speaker adaptation on Bidirectional Long ShortTerm Memory with Recurrent N...
متن کاملInvariant Representations for Noisy Speech Recognition
Modern automatic speech recognition (ASR) systems need to be robust under acoustic variability arising from environmental, speaker, channel, and recording conditions. Ensuring such robustness to variability is a challenge in modern day neural network-based ASR systems, especially when all types of variability are not seen during training. We attempt to address this problem by encouraging the ne...
متن کاملReverberation robust acoustic modeling using i-vectors with time delay neural networks
In reverberant environments there are long term interactions between speech and corrupting sources. In this paper a time delay neural network (TDNN) architecture, capable of learning long term temporal relationships and translation invariant representations, is used for reverberation robust acoustic modeling. Further, iVectors are used as an input to the neural network to perform instantaneous ...
متن کاملInvestigating the performance of machine learning-based methods in classroom reverberation time estimation using neural networks (Research Article)
Classrooms, as one of the most important educational environments, play a major role in the learning and academic progress of students. reverberation time, as one of the most important acoustic parameters inside rooms, has a significant effect on sound quality. The inefficiency of classical formulas such as Sabin, caused this article to examine the use of machine learning methods as an alternat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017